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Abstract

The association between conotruncal heart defects (CTHDs) and maternal genetic and 

environmental exposures is well studied. However, little is known about paternal genetic or 

environmental exposures and risk of CTHDs. We assessed the effect of paternal genetic variants in 

the folate, homocysteine, and transsulfuration pathways on risk of CTHDs in offspring. We 

utilized National Birth Defects Prevention Study data to conduct a family-based case only study 

using 616 live-born infants with CTHDs, born October 1997 - August 2008. Maternal, paternal 

and infant DNA was genotyped using an Illumina® Golden Gate custom single nucleotide 

polymorphism (SNP) panel. Relative risks (RR) and 95% confidence intervals (CI) from log-linear 

models determined parent of origin effects for 921 SNPs in 60 candidate genes involved in the 

folate, homocysteine, and transsulfuration pathways on risk of CTHDs. The risk of CTHD among 

children who inherited a paternally derived copy of the A allele on GLRX (rs17085159) or the T 

allele of GLRX (rs12109442) was 0.23 (95% CI: 0.12, 0.42; P=1.09×10-6) and 0.27 (95% CI: 

0.14, 0.50; P=2.06×10-5) times the risk among children who inherited a maternal copy of the same 

allele. The paternally inherited copy of the GSR (rs7818511) A allele had a 0.31 (95% CI: 0.18, 

0.53; P=9.94×10-6] risk of CTHD compared to children with the maternal copy of the same allele.

The risk of CTHD is less influenced by variants in paternal genes involved in the folate, 

homocysteine or transsulfuration pathways than variants in maternal genes in those pathways.
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INTRODUCTION

Congenital heart defects (CHDs) are the most common birth defect, affecting about one 

percent of live births in the United States (U.S.) annually [Bernier, Stefanescu, Samoukovic, 

& Tchervenkov, 2010; van der Linde et al., 2011]; they are the most common cause of infant 

mortality, increase the risk of neurodevelopmental delay in affected children, and increased 

lifelong morbidity [Bernier, 2010; Marelli, 2007; Reller, 2008]. Unfortunately, most CHDs 

are diagnosed without a known cause [Fahed, Gelb, Seidman, and Seidman, 2013]. Less 

than 10% of CHD cases are attributed to chromosomal abnormalities and approximately 

85% of cases are attributed to a multi-factorial etiology [Hobbs, MacLeod, Jill James, & 

Cleves, 2011; Jenkins et al., 2007; Matthews et al., 2003]. Maternal factors implicated with 

increased risk of CHDs include diabetes mellitus, [Casson et al., 1997; Towner et al., 1995] 

obesity, [Shaw, Nelson, & Moore, 2002; Waller et al., 1994] prenatal cigarette smoking, 

[Kallen, 1999; Karatza et al., 2011; Malik et al., 2008; Maurano et al., 2012; Patel et al., 

2012] low folate levels, [ L. D. Botto, Mulinare, & Erickson, 2003; Czeizel, 1998; Scanlon 

et al., 1998;] hyperhomocysteinemia, [Hobbs, Cleves, Melnyk, Zhao, & James, 2005; 

Verkleij-Hagoort et al., 2006; Wenstrom, Johanning, Johnston, & DuBard, 2001] and genetic 

polymorphisms in metabolic pathways including the folate, homocysteine and glutathionine/

transsulfuration pathways [Chowdhury et al., 2012; Hobbs, Cleves, Karim, Zhao, & 

MacLeod, 2010].

In contrast, the possible influence of paternal environmental and genetic factors on the risk 

of CHDs is much less investigated. Some of the few studies conducted suggest associations 

between young or advanced paternal age and increased risk of atrial septal defects, [Lian, 

Zack, & Erickson, 1986; Olshan, Schnitzer, & Baird, 1994] ventricular septal defects, [Lian, 

1986; Olshan, 1994] right ventricular outflow tract defects, [Green et al., 2010] pulmonary 

valve atresia, [Green et al., 2010] patent ductus arteriosus, [Su, Yuan, Huang, Olsen, & Li, 

2015] situs inversus [Olshan, 1994] and CHDs overall in their children [Hollier, Leveno, 

Kelly, DD, & Cunningham, 2000; Olshan et al., 1994; Yang et al., 2007; Zhan, Lian, Zheng, 

& Gao, 1991]. Other studies report no association between paternal age and risk of CHDs in 

their children [Cedergren, Selbing, & Kallen, 2002; Su et al., 2015; Zhan et al., 1991]. Other 

paternal exposures associated with increased risk of CHDs in their offspring include 

cigarette smoking, [Cresci et al., 2011; Deng et al., 2013] alcohol consumption [Ou et al., 

2016] and occupational exposure to endocrine disruptors [Cresci et al., 2011; C. Wang et al., 

2015]. Although the specific biological mechanisms are unclear, some hypothesize that these 

exposures may share a similar mechanism: germline mutations and epigenetic alterations to 

sperm haploid DNA [Kong et al., 2012; Sharma et al., 2015; Wyrobek et al., 2006; Beal, 

Yauk, & Marchetti, 2017; Linschooten et al., 2013; Marchetti et al., 2011; Yauk et al., 2007].
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Given that extant environmental exposure may induce changes in paternal DNA that can 

result in CHDs, we postulated that inherent paternal genetic factors, i.e., genetic 

polymorphisms, may also increase CHD risk. Numerous studies confirm that genetic 

polymorphisms in maternal and infant genes are directly or indirectly associated with risk of 

CHDs, particularly genes involved in folate, homocysteine and transsulfuration pathways 

[Chowdhury et al., 2012; Hobbs et al., 2010; Zhu et al., 2012]. Conversely, none of the 

published literature to date in English in PubMed, assess the influence of paternal genetic 

variants in folate, homocysteine or transsulfuration pathways and CHD risk in offspring. 

Thus, we investigated parent-of-origin effect for genetic variants in folate, homocysteine or 

transsulfuration pathways and the risk of conotruncal heart defects (CTHD) in offspring.

MATERIALS and METHODS

We used data from the National Birth Defects Prevention Study (NBDPS) a population-

based, case-control study conducted in the U.S. to investigate the contribution of genetic, 

environmental, and behavioral factors on the occurrence of major, non-syndromic birth 

defects [Yoon et al., 2001]. Methods of the NBDPS have been previously described [Yoon et 

al., 2001] but in brief, NBDPS families of cases and controls were identified from 

population-based birth defects surveillance systems in 10 states in the US, which included: 

Arkansas, California, Georgia, Iowa, Massachusetts, New Jersey, New York, North Carolina, 

Texas and Utah. The NBDPS was conducted from October 1, 1997 until December 2011 and 

enrolled 44,000 non-Hispanic (NH) white, NH-black and Hispanic women and their 

families; however, our study only included enrolled families of infants with estimated dates 

of delivery between October 1997 and August 2008.

For these analyses we conducted a case-parent trio study using 616 case families (1298 

samples (not all were trios)) with a singleton, live-born infant diagnosed with a CTHD 

within the first year of life. Infants with CTHDs affected by a known single gene disorder, 

chromosomal abnormality, or syndrome were excluded. In each surveillance program, 

medical records were abstracted by trained staff who actively ascertained cases from 

hospitals, birthing and other facilities.

CTHD Ascertainment

For NBDPS, all CHD cases were identified based on having at least one of the following 

diagnostic procedures: echocardiograms, surgical reports, cardiac catherizations, or 

autopsies. All diagnostic procedure information was then reviewed by a pediatric 

cardiologist at each study center to ensure uniform criteria for diagnoses. CHD classification 

was done by a panel of pediatric cardiologists from each study centers led by a pediatric 

cardiologist at the Center for Disease Control and Prevention (CDC) using the classification 

system specifically developed for the NBDPS which incorporates cardiac phenotype, cardiac 

complexity, and extra-cardiac anomalies [L. D. Botto et al., 2007]. In our study, conotruncal 

defects included truncus arteriosus, interrupted aortic arch type B, transposition of the great 

arteries, double outlet right ventricle, conoventricular septal defects, tetralogy of Fallot and 

pulmonary atresia with ventricular septal defect [L. D. Botto et al., 2007].
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Maternal Interview

After informed consent, case mothers completed a one-hour computer-assisted telephone 

interview administered in English or Spanish [Yoon et al., 2001]. During the interview 

women were queried about their prenatal exposures and information about the baby’s father, 

including, the father’s age, and race, occupation and health behaviors.

DNA Sample Collection

After completing the telephone interview, case families were mailed buccal swab kits for 

collection of maternal, infant and paternal DNA samples [Yoon et al., 2001]. DNA sample 

storage and processing methods for the NBDPS are described in detail in a prior publication 

[Rasmussen et al., 2002]. All cases who had maternal, paternal and infant DNA samples 

available were included in our study.

Genotyping and Quality Assessment—Genotyping was conducted on a total of 635 

case families using 200 ng of DNA on the Illumina Golden Gate platform [Fan, Chee, & 

Gunderson, 2006; Tang et al., 2014]. A total of 297 individuals were removed due to study 

ineligibility (n=33), high no-call rates (n=63), or high rates of Mendelian inconsistency 

(n=201). To ensure high-quality genotypes, we applied stringent quality control measures 

and excluded SNPs with obviously poor clustering behavior (60 SNPs), no-call rates >10% 

(328 SNPs), Mendelian error rates >5% (11 SNPs), MAF <5% (204 SNPs), or significant 

deviation from Hardy-Weinberg Equilibrium in at least one racial group (p<10-4, 12 SNPs). 

More detailed information regarding genotyping and quality assessment is described in Tang 

et al. [Tang et al., 2014]. For the current study, the final dataset included 1298 individuals 

from 616 case families, each with 921 SNPs. Thirty-seven percent of the study population 

were family trio samples.

Statistical Method—Summary statistics were expressed as mean (standard deviation) for 

continuous variables, and count (percentage) for categorical variables. In investigate the 

parent-of-origin effect; a log-linear model was fitted for the counts of each SNP as a 

function of mating types, maternal genetic effect, infant genetic effect, and imprinting 

parameter [Weinberg, 1999]. Based on the log-linear model for counts and assuming a 

Poisson distribution, the imprinting effect was estimated as the relative risk (RR) of a CTHD 

in a child who inherited a paternally derived copy of the minor allele compared to a child 

who inherits a copy of the minor allele from the mother. Bonferroni correction was used to 

adjust for multiple testing. Statistical significance level was set at P <5.43×10-5. Data were 

analyzed using statistical software SAS 9.4 (SAS Institute Inc., Cary, NC) for computing 

descriptive statistics and PREMIM/EMIM for fitting imprinting models [Howey & Cordell, 

2012].

Human Subjects Review

This study was approved by the University of Arkansas for Medical Sciences’ Institutional 

Review Board and the National Birth Defects Prevention Network with protocol oversight 

by the CDC, Center for Birth Defects and Developmental Disabilities. All study participants 

provided written informed consent and legal guardians provided written informed consent 

for participants who were minors.
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RESULTS

The distributions of maternal and paternal characteristics of infants with CTHDs are 

presented in Table 1. Approximately 70% of the mothers were non-Hispanic white, 27% had 

a high school education and 28% had some college education; 24% were overweight and 

21% were obese. Fifty-one percent of mothers reported periconceptional use of folic acid, 

24.5% consumed alcohol during pregnancy and 19% smoked cigarettes during pregnancy.

A total of 921 SNPs within 60 genes were included in the final analyses. We observed a 

statistically significant, decreased risk of CTHDs for paternally derived effects for three 

SNPs in two genes—glutaredoxin (GLRX) and glutathione-disulfide reductase (GSR) (Table 

2). These two genes are involved in numerous cellular metabolic and homeostatic processes 

including the transsulfuration pathway, oxidative-reduction processes, cellular redox 

homeostasis, and nucleobase-containing small molecular interconversion reactions. For a 

child who inherited a paternally derived copy of the A allele for rs17085159 in the GLRX 
gene, the risk of a CTHD was 0.23 (95% CI: 0.12, 0.44; P=2.66 x 10-4) compared to a child 

who inherits the maternal A allele. For the SNP rs12109442, also in GLRX, the risk of 

developing a CTHD for a child who inherited the paternal copy of the T allele was 0.27 

(95% CI: 0.14, 0.50; P=2.06 x 10-5, when compared to a child who inherited the maternally 

derived T allele. A similar magnitude of risk was also observed in children who inherited the 

paternal copy of the rs7818511 A allele, a SNP in the GSR gene, with a decrease in CTHD 

risk compared to children who inherited the maternal copy of the A allele (RR=0.31; 95% 

CI: 0.18, 0.53; P=9.94 × 10-4).

Overall we observed non-statistically significant decreased risks of CTHDs in children who 

inherited the paternally derived copy of the several folate, homocysteine and transulfuration 

pathway alleles compared to children who inherited the maternally derived copy of the allele 

(Table 2 and Figure 1). There was one exception in this observation concerning the SNP 

rs11953653 in the GLRX gene which showed an increased risk of CTHDs (RR=1.78; 95% 

CI: 1.29, 2.45; P=5.98 x 10-4) for children who inherited the paternal copy of the A allele 

versus those children who inherited the maternal copy of the allele (Table 2); however, the 

confidence interval contained the null value after the Bonferroni adjustment for multiple 

comparisons.

DISCUSSION

Our intent was to determine parent-of-origin effects for genetic variants in folate, 

homocysteine and transsulfuration pathways and risk of CTHDs in offspring. Little is known 

about the role of paternally derived genetic variants on pregnancy outcomes including their 

role in the etiology of CHDs. In our study, we found no statistically significant increased 

risk of CTHDs for a child who inherited a paternally derived copy of an allele from a SNP in 

genes involved in the folate, homocysteine or transsulfuration pathways compared to a child 

who inherited a maternal copy of the allele. However, we did identify three SNPs for which 

there was decreased risk of CTHDs for a child who inherited a paternally derived copy of an 

allele from rs17085159, rs12109442 and rs11953653 compared to a child who inherited a 
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maternal copy of the allele (Figure 2). One possible explanation for these findings is a 

parent-of-origin genetic effect in the etiology of CTHDs.

Parent-of-origin genetic effects comprise a growing field of developmental genetics and 

occur, primarily, through two mechanisms: genomic imprinting and trans-generational 

effects [Connolly & Heron, 2015; Elhamamsy, 2017; Lawson, Cheverud, & Wolf, 2013]. 

Genomic imprinting occurs when gene expression of a particular locus depends exclusively 

on the parent-of-origin [Plasschaert & Bartolomei, 2014]. Imprinting defects occur when 

this parental origin specific expression has been interfered with through mechanisms like 

uniparental disomy, translocations, inversions, or a deletion of one parental allele that allows 

for expression of only one copy of the imprinted gene [Elhamamsy, 2017; Lawson et al., 

2013]. Trans-generational genomic effects occur through complex interactions in utero or 

during spermatogenesis and can involve gene-environment or transgenerational gene-gene 

interactions [Connolly & Heron, 2015; Lawson et al., 2013]. GWAS studies have 

successfully identified both types of parent-of-origin effects in several phenotypes including 

attention deficit hyperactivity disorder, [K. S. Wang, Liu, Zhang, Aragam, & Pan, 2012] 

schizophrenia, [Palmer et al., 2006] testicular germ cell tumors, [Karlsson et al., 2013] cleft 

lip with/without palate, [Sull et al., 2009] body mass, [Hoggart et al., 2014] and autism 

spectrum disorder [Connolly, Anney, Gallagher, & Heron, 2017].

One type of parent-of-origin effect is genomic imprinting which is a mechanism by which 

epigenetic modifications lead to silencing of one of the two inherited alleles leading to 

parental-origin determined expression. There are instances where an expressed gene’s 

parent-of-origin can lead to disease. The most common example of this is in Prader-Willi 

syndrome [Shemer et al., 2000] and Angelman syndrome [Buiting, Williams, & 

Horsthemke, 2016; Shemer et al., 2000] in which either the paternal or maternal locus in 

region 15q11-13 is silenced or deleted, respectively [Elhamamsy, 2017]. To date, only a 

handful of imprinted loci have been discovered encompassing a small portion of the human 

genome. Using the Catalogue of Imprinted Genes [Morison, Ramsay, & Spencer, 2005] we 

discovered that these three SNPs with significant paternal versus maternal effect 

(rs17085159, rs12109442 and rs11953653) are close (<7kb) to a known imprinted gene, 

RHOBTB3 that is paternally expressed in the human placenta [Metsalu et al., 2014] and 

involved in embryonal development [Salas-Vidal, Meijer, Cheng, & Spaink, 2005]. Because 

imprinted genes tend to cluster together, it has been efficacious to examine regions within 

500kb of imprinted genes to identify parent of origin effects, therefore, these GLRX SNPs 

might well be within the imprinted cluster [Kong et al., 2009]. These findings suggest that 

the risk of CTHD associated with maternally inherited GLRX SNPs may be linked to the 

parent-of-origin imprinting of the nearby gene RHOBTB3. While our results are suggestive 

of this, further study of this region using gene expression profiling of the parental-trio will 

be necessary to confirm the role of imprinting in CTHD risk. There is also evidence to 

suggest a genetic basis for CTHDs [Andersen, Troelsen Kde, & Larsen, 2014; Fahed et al., 

2013; Gelb & Chung, 2014; Pierpont et al., 2007] but the causal genetic mutation has been 

identified in only a fraction of cases [Gelb & Chung, 2014]. These results highlight the 

necessity of further investigating the role of imprinting in human development and as an 

etiological explanation for CHDs.

Nembhard et al. Page 6

Am J Med Genet A. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The SNP rs7818511 was significant (P=9.94E-6) when comparing paternal versus maternal 

inheritance. Evaluation of this SNP using the mutation prediction tool Mutation Taster 

[Schwarz, Cooper, Schuelke, & Seelow, 2014] revealed that this polymorphism may cause 

splice site changes in the assembly of the Glutathione-Disulfide Reductase (GSR) protein 

leading to potential haploinsufficiency of the protein product. GSR is an essential 

component of the oxidative machinery used in multiple processes in the body. GSR 
production of glutathione, a significant antioxidant, is crucial to effective host defense 

against bacterial infections [Yan et al., 2013]. Febrile illness and infections are known risk 

factors for the development of CHDs and other developmental pathologies [Lorenzo D. 

Botto, Lynberg, & Erickson, 2001]. Maternal haploinsufficiency of GSR, a critical enzyme 

of the innate immune system, might predispose the mother to infectious disease, prolonged 

infection, or allow for disease associated sequela to occur.

Our search of the published English language literature in PubMed to date produced no 

other studies which conducted parent-of-origin analyses for risk of CHDs as the primary 

aim. However, one study did conduct parent-of-origin analyses in relation to risk of CHDs as 

ad hoc analyses. Long et al. [Long, Lupo, Goldmuntz, & Mitchell, 2011] assessed the 

associations between maternal SNPs in folate-related genes and the risk of CTHD and left-

sided heart defects. In their analyses they found that the maternal genotype, MTR A2756G, 

was associated with the studied cardiac defect phenotypes. They then tested for the presence 

of parental imprinting effects in this genotype using the parent-of-origin likelihood-ratio-test 

and the log-linear likelihood-ratio-test. The imprinting parameters from the parent-of-origin 

likelihood-ratio-test were elevated for both CTHDs and left-sided defects but were not 

statistically significant [Samanek et al., 1989]. But the parameter from the log-linear 

likelihood-ratio-test, for CTHD triads was statistically significant (Im=2.27, 95% CI: 

1.06-4.87; p = 0.03). These findings further support the possibility of parent-of-origin effects 

in the etiology of CTHDs.

Our study results should be interpreted in consideration of potential limitations. DNA 

samples were obtained from self-collected buccal cheek cell samples and there was disparate 

quality of the DNA samples. Additionally, gene expression data was not available in the 

case-parental trios to confirm the role of imprinting on CTHD risk. In spite of these 

limitations our study has several strengths. Our study population is a large population-based, 

multi-ethnic sample, the CTHDs cases were verified by pediatric cardiologists and there was 

standardization of the CTHD classification across study centers. We also used a very 

conservative method (Bonferroni correction) to determine statistical significance.

Although our study did not identify any paternal genetic variants in the folate, homocysteine 

or glutathione/transsulfuration pathways that increased risk of CTHDs, we did find 

suggestive evidence of parent-of-origin effects for maternal genetic variants in the GSR and 

GLRX genes. Further research with larger sample sizes and multi-omic data is need to 

validate our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure I. 
Distribution of Paternally-derived Effects for the SNPs Identified from Hybrid Analyses 

compared to Maternally-derived Effects for Common Variants in Genes Involved in Folate, 

Homocysteine and Transsulfuration Pathways and Risk of Conotruncal Heart Defects, The 

National Birth Defects Prevention Study, USA, October 1997 – August 2008 Births
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Figure II. 
Manhattan plot for Paternally-derived Effects for the SNPs Identified from Hybrid Analyses 

compared to Maternally-derived Effects for Common Variants in Genes Involved in Folate, 

Homocysteine and Transsulfuration Pathways and Risk of Conotruncal Heart Defects, The 

National Birth Defects Prevention Study, USA, October 1997 – August 2008 Births
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Table I

Summary of characteristics from Chi-squared analyses for mothers of infants with (cases) conotruncal heart 

defects, The National Birth Defects Prevention Study, U.S.A., October 1997 – August 2008 births (n=616).

Characteristics Maternal Paternal

N (%)

Age at Delivery (mean ± standard deviation) 28.3 (6.1) 31.4 (7.3)

 <35 years 504 (82.4%) 372 (71.0%)

 ≥35 years 108 (17.7%) 152 (29.0%)

 Missing information 4 92

Race/Ethnicity

  Non-Hispanic white 401 (65.5%) 386 (63.7%)

  Non-Hispanic black 49 (8.0%) 58 (9.6%)

  Hispanic 123 (20.1%) 125 (20.6%)

  Other 39 (6.4%) 37 (6.1%)

  Missing 4 10

Education

 < 12 years 83 (13.5%) 94 (15.6%)

  High school diploma or equivalent 167 (27.2%) 190 (31.5%)

 < 4 years of college education 173 (28.2%) 135 (22.4%)

  At least 4 years of college or Bachelor’s degree 190 (31.0%) 185 (30.6%)

  Missing 3 12

Mean Household Income

 < $10,000 94 (16.2%)

  $10,000 - $29,999 150 (25.9%)

  $30,000 – $49,999 118 (20.4%)

  $50,000 + 217 (37.5%)

  Missing 37

Body Mass Index

  Underweight (< 18.5 kg/m2) 31 (5.3%)

  Normal weight (18.5 to < 25.0 kg/m2) 298 (50.4%)

  Overweight (25.0 to <30.0 kg/m2) 141 (23.9%)

  Obese (≥ 30.0 kg/m2) 121 (20.5%)

  Missing 25

Periconceptional Folic acid Supplementation

  Yes 314 (51.2%) N/A

  No 299 (48.8%) N/A

  Missing 3 N/A

Alcohol Consumption During Pregnancy

  Yes 149 (24.5%) N/A
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Characteristics Maternal Paternal

N (%)

  No 460 (75.5%) N/A

  Missing 7 N/A

Cigarette Smoking During Pregnancy

  Yes 114 (18.6%) N/A

  No 498 (81.4%) N/A

  Missing 4

Cigarette smoking in home during first trimester 521 (85.3%)

  No N/A 90 (14.7%)

  Yes N/A 5

  Missing information N/A

Currently employed? 31 (5.2%)

  No N/A 570 (94.8%)

  Yes N/A 15

  Missing information N/A

Health problem at birth or birth defect? 512 (85.2%)

  No N/A 89 (14.8%)

  Yes N/A 15

  Missing information N/A

Mother blood relative of baby’s father? 607 (99.5%)

  No N/A 3 (0.5%)

  Yes N/A 6

  Missing information N/A
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